与沸石相比,MOF材料能捕获二氧化碳与有毒气体——解读2025年诺贝尔化学奖

发布于: 2025-10-10 16:45
阅读: 6

2025年诺贝尔化学奖揭晓:三位科学家因开创金属有机框架材料(MOF) 获奖

 

 

当地时间10月8日11时45分,2025年诺贝尔化学奖公布,授予北川进(Susumu Kitagawa)理查德·罗布森(Richard Robson)奥马尔·亚吉(Omar Yaghi),以表彰“他们对金属-有机框架的发展”

 

三位获奖者创造了一种具有巨大空间的分子结构,使气体和其他化学物质能够在其中流动。这些结构被称为金属有机框架(metal-organic frameworks,简称 MOF)可用于从沙漠空气中提取水分、捕获二氧化碳、储存有毒气体,或催化化学反应。

 

三位获奖者发展出一种全新的分子结构架构形式。在他们的设计中,金属离子充当“角石”,由长链有机(以碳为基础的)分子相互连接。金属离子与有机分子共同组装成具有大量空腔的晶体结构。这种多孔材料被称为金属有机框架(MOF)。通过改变 MOF 所采用的构筑单元,化学家可以定向设计出能够捕获和储存特定物质的材料。MOF 还可以驱动化学反应或导电。

 

 

“总结而言, MOF 材料的获奖意义在于其在吸附分离领域中发挥了至关重要的作用,并通过作为碳材料模板,极大地拓展了其在能源、催化和材料科学中的广泛应用潜力。”

 

 

 

如果一名房地产中介负责推销分子世界的房产,他或许会说:“这是一间宽敞明亮、专为水分子量身定制的单身公寓。”

这样的“房子”确实存在。它们是由科学家精心设计的分子建筑——金属有机框架(MOF)。今年,诺贝尔化学奖授予日本科学家北川进、澳大利亚科学家理查德·罗布森和美国科学家奥马尔·亚吉,以表彰他们在MOF材料开发方面的开创性贡献。
图片
 
这种新型分子结构内部拥有大量空腔,分子可在其中自由进出。得益于三位科学家的工作,化学家如今已能设计出数以万计的不同MOF,为化学领域带来一连串“奇迹”。
 
图片
 
理查德·布森“分子建筑”灵感源自一节化学课

科学发现常始于“跳出框架”的思考。2025年诺贝尔化学奖的故事,源自一节普通的化学课准备。

1974年,理查德·罗布森正在为课堂制作分子模型,他用木球代表原子、木棒代表化学键。摆弄间,他灵光一现:如果能像拼积木一样,让原子或分子依照其化学特性自行连接,能否构建出新的“分子建筑”?

直到十多年后,他终于动手验证这一想法。罗布森将带正电的铜离子与四臂分子相结合,结果这些分子像钻石晶格一样自组装成规则的三维晶体结构,不同的是,这种晶体内部竟有大量空腔。1989年,他在《美国化学会志》上发表成果,首次提出这类分子网络的潜力,预言它们将赋予材料前所未有的性质。
 
图片

理查德·罗布森的灵感来源于钻石的结构,钻石中的每个碳原子都与其他四个碳原子连接,形成金字塔状的结构。

 
此后,罗布森陆续合成出多种含空腔的分子网络,并证明这些结构内部的离子可以互换,从而让物质进出。他展示了可按需设计的分子晶体,并提出这种材料可用作催化剂。尽管早期材料脆弱、易分解,被认为“没用”,但罗布森已打开了“分子建筑”的大门。

北川进:让“无用之物”变得有用

20世纪90年代,北川进接过了罗布森探索的火种。他奉行的信条是:“要看到‘无用之物’的用处。”

1992年,北川进构建出一种二维分子材料,分子之间形成可容纳丙酮分子的空腔。虽然功能有限,但这代表一种全新的分子设计思维。他同样用金属离子作为“支点”,以有机分子相连。
 
图片

1997年,北川进成功构建出一种金属有机骨架,其内部由开放通道相交。

 
1997年,他的团队用钴、镍、锌离子与4,4′-联吡啶分子搭建出三维MOF结构,形成交错的空腔通道。当他们将材料中的水去除后,这些孔洞仍然稳定,可以吸附和释放甲烷、氧气、氮气等气体而不变形。

面对“已有多孔沸石,为何还要MOF?”的质疑,北川进给出关键答案。他认为,MOF可由多种金属和有机分子构建,功能可定制,并且材料柔韧,能如呼吸般吸附和释放气体。这一定义奠定了MOF的科学基础。
 
奥马尔·亚吉:为分子积木命名并赋予力量

在大洋彼岸,奥马尔·亚吉延续并拓展了这一理念。

1995年,亚吉正式提出“金属有机框架(MOF)”这一名称,定义了这种由金属节点和有机配体组成、具有规则空腔的晶体结构。
 
图片

1999年,亚吉构建了一种非常稳定的材料——MOF-5,它具有立方体结构。

 
随后,他于1999年研发出MOF-5,这是一种极其稳定且空间巨大的框架结构,即使在300℃高温下也不会坍塌。最令人震惊的是其内部表面积:几克MOF-5的内部总面积相当于一个足球场,远超传统沸石。这意味着它能吸附更多气体。
 
亚吉的团队继续扩展MOF家族,创造出十几种变体,用以储存甲烷、捕获二氧化碳,甚至在沙漠中利用MOF创造了“空中取水”的奇迹:夜晚材料吸附空气中的水汽,白天经太阳加热后释放出液态水,为干旱地区提供取水新途径。
 
图片

. MOF-303可在夜间从沙漠空气中捕获水蒸气,次日清晨材料受热后即释放饮用水;MIL-101具有巨型空腔结构,已应用于催化降解污染水体中的原油与抗生素,同时具备储氢与二氧化碳封存功能;UiO-67可吸附水体中的全氟烷基物质,在水体净化与污染物去除领域展现应用前景;ZIF-8正通过实验研究用于从废水中回收稀土元素;CALF-20具有非凡的二氧化碳吸附能力,目前正在加拿大某工厂进行测试;NU-1501经优化可实现常压条件下的氢气储释。氢能虽可作为车辆燃料,但常规高压储氢罐存在爆炸风险。©Johan Jarnestad/瑞典皇家科学院

如今,科学家已设计出数以万计的MOF,它们被用于碳捕集、空气净化、药物递送、能源存储等众多前沿领域。甚至在半导体制造中,也有MOF被用于捕捉或分解剧毒气体。虽然目前大多仍处于小规模应用阶段,但许多公司已开始投资其规模化生产与商业化,部分领域已取得实质性进展。多家公司正在测试可从工厂与发电站废气中捕获二氧化碳的 MOF 材料,以降低温室气体排放。

 


一些科学家认为,MOF潜力巨大,有望成为“21世纪的材料”。无论未来如何,通过MOF的开发,三位科学家为我们提供了解决能源、环境与健康等重大问题的新途径,而这正契合了诺贝尔遗嘱中“造福人类”的精神。
 

 

获奖者简介

 

他们的分子结构中,蕴藏着“化学反应的房间”

 

图片

 

北川进(Susumu Kitagawa),1951 年出生于日本京都,1979 年获日本京都大学博士学位,现任京都大学教授。

 

图片

 

理查德·罗布森(Richard Robson),1937 年出生于英国格鲁斯本,1962 年获英国牛津大学博士学位,现任澳大利亚墨尔本大学教授。

 

图片

 

奥马尔·亚吉(Omar M. Yaghi),1965 年出生于约旦安曼,1990 年获美国伊利诺伊大学厄巴纳-香槟分校博士学位,现任美国加利福尼亚大学伯克利分校教授。

 

 

 

参考文献

[1]https://www.nobelprize.org/prizes/chemistry/2025/popular-information/

 

 

 

 

内容来源:综合来源科普中国、科技日报

声明:仅供分享交流,图文版权归原作者。侵删。

  • toolbar
    电话:0311-87335018
  • toolbar
    邮箱:634805526@qq.com
  • toolbar
  • toolbar
    返回顶部